计算机体系结构专家、华中科技大学计算机学院教授金海评价此项研究“在类脑计算系统领域做出了基础性、原创性的贡献,有利于自主掌握新型计算系统软硬件核心技术。”

通用计算领域有两个著名概念,一个是“图灵完备性”,另一个是“冯·诺依曼体系结构”。这使得通用计算领域在软件层、编译层和硬件层都有了统一的范式,使不同层次各自发展而又可以无缝兼容。

“但是,现有的类脑计算系统研究大多聚焦于如何实现具体的芯片、工具链、应用和算法的创新,忽略了从宏观和抽象层面上对计算完备性和体系结构的思考,阻碍了类脑计算软硬件的独立发展和互相兼容的可能性,我们一直在思考如何突破这一局面,扩展类脑计算系统的应用场景?”提起科研的初衷,张悠慧告诉记者。

团队针对类脑计算特性——不像通用计算注重每一个计算过程的精确而更注重结果拟合,提出了对计算过程和精度约束更低的类脑计算完备性概念,并且设计了相应的类脑计算机层次结构:图灵完备的软件模型,类脑计算完备的硬件体系结构,以及位于两者之间的编译层。通过构造性转化算法,任意图灵可计算函数都可以转换为类脑计算完备硬件上的模型,这意味着类脑计算系统也可以支持通用计算,极大地扩展了类脑计算系统的应用领域,也使类脑计算软硬件各自独立发展成为可能。

首次!我国以计算机系为第一完成单位的论文登上《自然》

类脑计算机层次结构(左)与现有通用计算机(右)的对比

“一开始审稿人认同我们研究问题的意义,但是并不理解我们对于研究问题的解决思路,对于是否有必要进行底层的计算理论设计,审稿人提出了质疑。”团队成员、计算机系博士后渠鹏说,“但是通过对整体行文逻辑、文章内容和原型实验的反复斟酌修改,以及对研究思路和质疑点的一一反馈,审稿人最后认同了我们的设计理念。”

首次!我国以计算机系为第一完成单位的论文登上《自然》

张悠慧(右)与博士后渠鹏探讨问题

70多页的反馈文件,一次又一次的讨论、修改、迭代,见证了团队一步一步迎难而上的努力。“当审稿人说我们的研究明确了不同领域的分工和接口,将对类脑计算的交叉研究产生积极作用时,真的特别受鼓舞,感觉到团队研究的东西是十分有意义的,也是被类脑计算社区所认可的。”渠鹏说。