每种诊断都会附带一个反映出应用程序正确的概率。程序还列出了任何已知的会导致该疾病的基因突变,有助于分析患者的病情。FDNA 的首席执行官 Dekel Gelbman 估计,这款应用正被 130 个国家的医生和研究人员使用。所有的患者数据经过了匿名化和加密,以保护隐私。
有了 Venter 博士的工作,为研究人员提供的数据池越深,它就越有价值。牛津大学的 Christoffer Nellaker 已经设立一个叫「米纳发和我」的网站,健康和患病人士均可上传自己的照片,授权相应研究使用他们的图片。另外,他也成立了一个叫做 Minerva Consortium 的网络,鼓励人工智能研究人员共享数据。
国立人类基因组研究院的 Maximilian Muenke 、国立儿童健康系统的 Marius Linguraru 以及同事们正在尝试扩大研究。他们发表了一系列使用了面部识别算法的研究,这些算法使用了亚洲、非洲以及拉美人口的照片数据,识别不同基因疾病,准确率高达 90% 以上。在许多贫穷国家,识别基因疾病的产前测试很昂贵,人们消费不起。比如,一个患有唐氏综合症的婴儿,通常在产前就可以检测出(欧洲和亚洲),但是在贫穷国家,孩子不到一岁就无法诊断出唐氏综合症。研究人员有意开发出一款医生通过智能手机即可识别最常见症状的应用程序,减少这类悲剧的发生。
三、最后的防线
这些技术也造成了威胁。首先涉及隐私。相比指纹等其他生物特征数据,人脸的一个巨大区别就是它们能够远距离起作用。人们只要有手机就可以拍下照片,供人脸识别程序使用。这意味着公民隐私可能遭受更大的损害。
Venter 博士指出,基因组信息必须被视为个人信息,即使它展现出来不过是一个无意义的字母序列。他警告说,从人们目前在网上发布的、来自 23andMe 等 DNA 检测服务的有限的基因数据中就能构建一张面孔画像。