如果你想目睹下一个划时代的发现,一个用更灵活的智能奠定机器基础的技术,你应该看看那些类似反向传播的研究(如果你在 80 年代了解到它):那些对尚未成功的理念坚持不懈的聪慧之人。
几个月前,我去脑、心智与机器研究中心(Center for Minds, Brains, and Machines,一家由多个机构成立的研究中心,总部位于麻省理工学院),参加我的朋友埃亚勒·德克特(Eyal Dechter)的认知学论文答辩。答辩开始前,他的妻子艾米、他家的狗鲁比(Ruby)和他们的女儿苏珊娜(Susannah)正围着他,给他打气。屏幕上有一张鲁比的照片,它旁边是婴儿时期的苏珊娜。当埃亚勒让苏珊娜指出照片上的自己时,她兴高采烈地朝自己婴儿时期的照片挥舞一条很长的可伸缩教鞭。走出房间的路上,她在妈妈身后推着一个玩具车,回头喊了一声“爸爸,祝你好运!”最后,她还用西班牙语说了一句“走啦(Vámanos)!”她才两岁。
“它现在还不算成功,但这只是暂时的。”
埃亚勒用一个有趣的问题开始了他的答辩:苏珊娜是如何通过两年的历练学会说话、玩耍和听故事的?人脑的什么特质使它如此善于学习?未来计算机能否这么迅速流畅地学习?”
我们基于已知的事物理解新现象,我们将一个事物分解成碎片,然后学习这些碎片。埃亚勒是一位数学家兼程序员。在他眼里,制作蛋奶酥这种任务相当于于极为复杂的计算机程序。但在学做蛋奶酥的时候,不需要学习无数类似程序中的微小指令,例如 “手肘旋转30度,低头看桌子,然后伸出食指,然后……”如果在做每个新任务的时候都要研究这样的细小指令,学习过程就会变得非常艰难,你也会在大量已经学到的知识中浪费时间。因此,我们只需要指出程序中高层次的步骤,比如“搅拌蛋清”,这样的高层次步骤本身已经覆盖了更小的子程序,比如“打破鸡蛋”和“取出蛋黄”。