以上图解来自辛顿、大卫·鲁姆哈特(David Rumelhart)和罗纳德·威廉姆斯(Ronald Williams)有关“误差传播”的开创性著作。
然后,将这一层神经元与另一层神经元相连,假如一层上有几千个神经元,它们与另一层上的几千个神经元相连,然后一层一层以此类推。最后,这块三明治的最顶层,即输出层,只有两个神经元,一个代表“热狗”,另一个代表“不是热狗”。这个过程是为了训练神经网络在图片中有热狗时将兴奋仅传导至第一个神经元,而在图片中没有热狗时将兴奋仅传导至第二个神经元。这种训练方法就是辛顿开发的反向传播技术。
反向传播的原理极其简单,但它需要大量的数据才能达到最佳效果。正因如此,大数据对人工智能至关重要。也正式出于这个原因,Facebook 和谷歌对大数据求之若渴,Vector Institute 决定在加拿大最大的四家医院附近设立总部,并与他们开展数据合作。
在上面的例子里,所需的数据是几百万张图片,部分图片中有热狗,其他图片中没有。重要的是,图片要被标记出是否带有热狗。